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Earth’s biodiversity as interpreted by a chemist
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Exotic states such as quasicrystals are postulated to exist apart from the normal
states such as crystals or liquids in complex systems containing at least three indepen-
dent components. The number of exotic states increases asymptotically as the number
of components increases. Assuming that the biosphere incorporates about 30 elements
and assuming the occurrence of all of the thermodynamically allowed processes the
number of one-phase exotic states can, intuitively, be used as a measure of Earth’s bio-
diversity. A structure of links between the individual exotic systems is similar to that
between species in the genealogical chart of biosphere.
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1. Introduction

Species diversity on Earth is a fundamental problem in biology. For many
different reasons a number of species that lived on Earth during one or another
geological period cannot be estimated readily. A current estimate is also very
approximate; it is argued that there are now from 10 up to 80 [1,2] or even
100 millions of different species of living organisms [3]. Two opposing processes
determine this number: evolutionary productivity of nature and natural or cata-
strophic extinctions. In some geological periods the latter process resulted in dis-
appearance of as many as 95% of the then existing species [4].

Some authors estimate that during the whole history of Earth the rate of
extinction was about one species a year. Using these numbers, a rough estima-
tion of the number of taxonomic groups, such as for instance genera or spe-
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cies, that ever lived on Earth can be attempted. This number seems to be on
the order of billions. It can be argued that the total biodiversity should be one
way or another connected with the diversity of some chemical systems. Obvi-
ously, every living organism can be treated as, in fact, an open system, remote
from equilibrium, and spacially and temporally ordered [5]. However, thus far
neither biologists nor chemists took interest in the diversity of such chemical sys-
tems that could underlie living organisms. In physics and chemistry the situation
is diametrically different. Owing to the common effort a link has been estab-
lished between the physical diversity of elementary particles (protons, neutrons
and electrons) and the chemical diversity represented by chemical elements.

The aim of this work is to indicate a correspondence between diversity of
some chemical systems and species diversity on Earth.

2. Theory

In thermodynamics, a state equilibrium of the system is described by a
certain function G, known as thermodynamic potential. In the systems with C

independent components

G = G(p, T , c1, c2, . . . , cC), (1)

where p, T , c1, c2, . . . , cC denote respectively the pressure, the temperature and
the concentration of individual independent components.

Individual types of states of the complex systems are known as phases,
and are described by the individual types of the state functions. A condition
for thermodynamic equilibrium in the systems with C independent components
and P phases is equality of chemical potentials, µ

(j)

i , for the ith component
(i = 1, 2, . . . , C) in the individual phases (j = 1, 2, . . . , P ) [6,7]:

µ
(1)
i = µ

(2)
i = · · · = µ

(P)
i , (2)

where i = 1, 2, . . . , C.

This set of equations leads to the well-known Gibbs phase rule
that describes the connection between C, P and the number of degrees of
freedom, f .

f = C − P + 2. (3)

Many authors [8–13] have noticed and offered different interpretations for a
striking similarity between equation (2) and a famous Euler’s formula that gives
a fundamental relationship between vertices, V , edges, E, and faces, F , of a pla-
nar graph on the surface of two-dimensional sphere, henceforth called 2-sphere.

F = E − V + 2. (4)
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We have recently shown [14] that equations (3) and (4) are so similar, because
there is such a vectorial function R = (X, Y ), dependent on thermodynamic
parameters, whose picture can be visualized as a certain surface isomorphic with
2-sphere. The thermodynamic potential of this surface can be written in the
form:

G = G(A(Ri, Rk), B(Rj , Rl), . . . , C(Rf −1, Rf )), (5)

where Rx is the point of the 2-sphere surface. A number of internal functions
A, B, . . . in the G potential is equal to the number of independent compo-
nents, C.

It is seen that G defined in equation (5) can be represented by a planar
graph on the R surface, called by us a graph of state [14]. The edges in the
graph of state are the geodesic lines that link the individual vertices, Ri and Rk.
The edges represent the individual independent components of the system. The
sequence of edges closing certain area on the 2-sphere surface creates a face.
This face represents a phase formed by those components that correspond to the
edges enclosed in this sequence.

An example for the equilibrium graph of state G for the five-component
(independent components A, B, C, D, E) and three-phase system (phases α, β,
γ ) is shown in figure 1(a). Equilibrium phase transition without formation of
new phases is described by the change in the lengths of the geodesic lines that
link the individual vertices. Phase transition transforms G graph into G′ graph
and is described by gluing of two graph G vertices. The phase composition is
determined by the edges that form a given face. Equilibrium phase transition
without formation or disappearance of phases is described by the change in the
lengths of the geodesic lines that link the individual vertices.

The change in thermodynamic state is accompanied by G being trans-
formed into G′ which is brought about by gluing or disconnecting of some graph
G vertices.

All possible graphs of state and their number for the one-phase systems
with C from 1 up to 5 are shown in figure 1(b). Note that for the systems
composed from more than two constituents there exist more than one graph
of state. For example, at C = 2 η = 2 while at C = 3 η = 3. Whilst these graphs
are topologically different, always one linear graph is available that is a usual
generalization of the corresponding graph at C = 1 or C = 2. These are normal
graphs. Only at C ≥ 3 do the graphs described as a branched tree appear. We
coined the name exotic graphs for such graphs. Consequently, the states repre-
sented by such graphs are also called exotic. In our recent paper [14] we argued
that stable quasicrystals [15–18] can be represented by exotic graphs. Exotic state
can be obtained from the normal one by phase transformation. Such a pro-
cess is shown in figure 2 for a four-component system. Note that on the way
from the normal to the exotic state the two-phase systems always occur (such
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Figure 1. (a) Examples of the graphs of state for the three-phase (α, β, γ ), five-component (A, B,
C, D, E) system. Graph G is associated with the following distribution of components between
the phases: α = (A, B, C, D, E); β = (B, C); γ = (E). (b) Graphs of state for the one-phase systems
containing up to five independent components. η defines the number of graphs for the specific C.
Graphs marked with “a" represent normal states; graphs marked with other letters represent exotic

states.

two-phase systems are represented by the graphs in braces in figure 2). Note
also that not every two-phase system undergoes transformation into the exotic
state. It is seen in figure 2(a) that from among 11 available transformation chan-
nels, only five channels yield exotic state while six others return to the initial
normal state. Thus examination of figure 2(a) reveals that under suitable con-
ditions the normal Gn state transforms with a 4/11 and 1/11 probabilities into
the exotic Ge and G′

e states, respectively. Similarly, under suitable conditions Ge

undergoes transformation into another exotic state G′
e with a 2/13 probability

(see figure 2(b)).
Examination of the graphs of state for the systems C > 4 indicates that even

for five independent components the Ge exotic states will appear that cannot be
obtained directly from the normal Gn states as, for instance, the d and f phases
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Figure 2. Phase transformations in the one-phase, four-component system.

in figure 1(b) at C = 5. Obviously, the exotic states of this type can descend from
the less exotic states obtained earlier from the normal states. The f state in fig-
ure 1(b) can be formed from the phase represented by the d or e graph. It can
be argued that the thermodynamical states in complex systems can be ordered in
a diachronic series. A specific state will appear in a specific location in the series
provided that it is preceded by the suitable ancestors.

Let us treat a phase transfomation “one-phase system → multiphase sys-
tem" as a first-order kinetic process, characterized by the rate constant, k, that
is a product of the probability, w, for the specific transformation channel, and
the kinetic weight for this channel, r. We can suggest a mechanism for any pos-
sible phase transformation in a given thermodynamic system. For instance, a
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mechanism of the transformations shown in figure 2(a) can be described by

a → a, kaa = waa
∗raa, waa = 6/11,

a → b, kab = wab
∗rab, wab = 4/11,

a → c, kac = wac
∗rac, wac = 1/11,

where, according to figure 1b, a stands for the normal phase, Gn, while b and
c stand for the exotic phases, Ge and G′

e. Solution of the differential kinetic
equations for the rate of reaction described by this mechanism gives a genea-
logical tree linking individual phases in the complex system. The examples of
the graphs representing genealogical tree for the system with four independent
components are shown in figures 3(a) and (b) for two extreme situations. These
graphs resulted from the solution of kinetic equations describing transformations
shown in figure 2.

The example shown in figure 3(a) is based on the assumption that kinetic
weights, rij , for all transformation channels are equal. In figure 3(b) such condi-
tions are modified by assuming rac = rca = 0. Both types of graphs shown in Fig
3 are known to biological systematics. The process of formation of new species
from two or greater number of different living organisms is called speciation as
a result of allopolyploidy (for instance, the links between rape, Brassica napus,
cauliflower, Brassica oleracea, and turnip, Brassica campestris). The second type,
shown in figure 3b, is called cladogenesis.

The genealogical graph that represents the structure of links between all
the graphs of states for one-phase four-components systems is shown in fig-
ure 3. Similar genealogical graphs can be conceived for more complex systems
composed from larger numbers of independent constituents. If a plethora of
exotic states is available, the genealogical graph will necessarily be more involved,
retaining, however, a logical structure exhibited by the graph shown in figure 3.
The numbers listed in Table 1 give the number of states for the systems with 10,
20 and 50 independent components [19]. Difficulties involved in the construction
of genealogical graph are of course enormous. The number of graphs of state
increases exponentially as C increases [21,22]. For every complicated system it is
more convenient to replace C by the number of elements that form this system
[22]. According to Zhao [23]

C = M + r ′ − Z, (6)

where C is the number of constrained conditions other than � (mole fraction of
the component) = 1, while r ′ is the number of independent reactions that do not
occur due to kinetic restrictions. Z differs from zero if, for instance, the composi-
tion of one phase is the same as the composition of another one. If such special
cases are ignored, Z = 0, as is assumed in our further considerations. Further-
more, we do not impose any kinetic restrictions on the reactions that occur in
the system which is tantamount to the assumption that r ′ = 0. Then, irrespective
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Figure 3. Genealogical graph for the states Gn, Ge and G′
e that describes the links between the

states of the four-component system. figure 3(a) is obtained on the assumption that kinetic weights
for all transformation channels are equal. figure 3(b) is obtained on the assumption that rac = rca = 0
while other rij weights are equal. The numbers at the bottom of graphs, besides the edges, give the
fraction of the phase represented by the given edge that is formed after infinitely long time, from the
system composed initially from the normal phase, Gn. (a) Transformation of the normal Gn graph
into the other graphs. (b) Transformation of the exotic Ge graph into the other graphs. (c) Transfor-
mation of the exotic G′

e graph into the other graphs. Crossed arrows denote that the transformation
does not occur.

of the number of components, the number of independent components is equal
to M, the number of elements that form the individual components.

Living organisms are built from an enormous number of chemical com-
pounds. Even rough estimation is of dubious value since in such a system as
living organism a very notion of component is blurred. There are about 30 chem-
ical elements that are involved in the tissue and functioning of living organisms
[24]. A mean abundance, W , of chemical elements in a body of human weigh-
ing 70 kg is reported in Table 2. The presence of some elements, such as Al,
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Table 1
A number of different states, η, in equilibrium
or close to equilibrium, in one-phase systems

with a large number of constituents, C [19].

C η

10 235
20 2144505
30 4.03 × 1010

40 1.01 × 1015

50 2.96 × 1019

may be contested, since indispensability of aluminium for living organisms is by
no means proven. Be as it may, the number of bioelements can be estimated as
about 30 (electrons should also be taken into account since redox reactions cer-
tainly do occur in living organisms). If in a thermodynamic system bioelements
are interlinked with all kinetically allowed reactions, then, according to Brink-
ley’s equation (6), the number of independent components C = 30.

Inspection of Table 1 reveals that such equilibrium equivalents of living
organisms can exist in 4.03 × 1010 types of state, as this number represents the
chemical diversity of one-phase systems with 30 independent constituents. The
logical structure of links between all of these states is analogous to that shown
in figure 3. Even though the total diversity of biological species is very uncertain,
it can reasonably be claimed that this number is close to the chemical diversity
assessed above. It can also be claimed that a parent graph for individual states,
that describes the links between the states in the chemical system, is qualitatively
similar to the corresponding graphs known from taxonomy.

While the correspondence between non-equilibrium and equilibrium graphs
for the system close to equilibrium seems to be well founded, it ceases to be so
for the living organisms which are certainly very far from equilibrium. The appli-
cation of the Gibbs’ phase rule in the form of Eq. (2) may not be justified. For
this reason, and it is not difficult to add others, our considerations on the links
between biodiversity of life on Earth and the number of exotic equilibrium states
are only speculative.

Some criticism can be rebutted readily. We do not think that exotic states
of thermodynamic equilibria in some systems are tantamount to the states of
biological systems that represent specific species of living organisms. States in
equilibrium are different than the states far from equilibrium. All that we claim
is the striking similarity between the number that represents the diversity of
exotic equilibria states in some complex chemical systems and the number that
represents the biodiversity of the Earth. We also draw attention to the similar-
ity of relations between individual exotic states and between individual biolog-
ical species. Thermodynamic parameters of living organisms and those of their
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Table 2
Average abundance, W , of element, M, in a

human body weighing 70 kg [24].

M W

As 18 mg
N 1.8 kg
B ?
Br 260 mg
Cl 95 g
Cr ?
Sn 14 mg
Zn 2.5 g
F 2.6 g
P 780 g
Al. 61 mg(?)
I 12-20 mg
Co 1.5 mg
Si ?
Mg 19 mg
Mn 12 mg
Cu 72 mg
Mo ?
Ni ?
K 140 g
Se 14 mg
S 140 g
Na 100 g
O 43 kg
V 0.11 mg
Ca 1 kg
C 16 kg
H 7 kg
Fe 4.2 g

surroundings are, of course, much different but we do not think that this makes
our reasoning invalid. We do not try to define the state of the living organ-
ism. We are only interested in the number of feasible classes of living organisms.
This number need not be determined by non-equilibrium thermodynamics but
it can be determined using as a base equilibria in the systems constituted from
about 30 bioelements assuming the occurrence of all kinetically allowed reac-
tions. Of course, the same thermodynamic parameters that determine precisely
the equilibrium state of the chemical system do not determine the state of the
living organism. However, the states of living organisms do correlate with the
states of exotic equilibria in some chemical systems. Analogous situation occurs
in the world of atoms. The states of individual atoms certainly correlate with
the states of corresponding sets of protons, neutrons and electrons, even though
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the states of the set of elementary particles are determined by completely differ-
ent parameters than is the state of the atom. The very notion of biological spe-
cies has no clear-cut definition. Despite of this, we agree with Wilson [1] and
with many others that this notion is useful. The same in chemistry—the chemi-
cal compound may not have a well defined composition but it does not preclude
the use of this term.

Nevertheless, the search for the links between biology, as measured by
the number of existing species, and chemistry, as measured by the number of
thermodynamic states in complex systems, seems to be a worth while task. The
striking similarity between the number of biological species and the number of
equilibrium states for some chemical systems as well as the quantitative simi-
larity between the genealogical graphs for both types of diversity may not be
only accidental. Recall that graphs have been remarkably successful in enumer-
ations in very disparate fields. Perhaps also the enumeration suggested in this
work is more than playing with numbers. Perhaps the number of biological spe-
cies, extinct and extant, is determined by the equilibrium thermodynamics of the
system. Of course, properties of the individual biological species are determined
by non-equilibrium thermodynamics. The analogy with the world of chemical
atoms and elementary particles seems to be constructive. Of course, properties
of the helium atom, 4He, are completely different from properties of the set of
two protons, two neutrons and two electrons. Still, the helium atom, as well as
any other atom, can be derived from the state of the suitable set of elementary
particles. Thus, the diversity of chemical elements is measured by the diversity of
the set of states for the proper number of protons, neutrons and electrons. In this
work we transfer this reasoning on the correspondence between species diversity
and diversity of equilibrium states for the system composed from 30 elements.
Until hypotheses put on more firm ground are devised, speculation offered in
this work is hoped to be of some interest.

3. Conclusions

Thermodynamic equilibrium states in complex systems have a similar struc-
ture of interlinks, a genealogical tree, as the structure of interlinks between living
species in biology.

It is suggested that the diversity of thermodynamic equilibria states in the
systems composed of 30 elements in which all kinetically allowed processes occur
corresponds to the global biodiversity of Earth, estimated as the number of spe-
cies, extinct and extant, that have ever lived on the planet.

The former diversity attains the number 4.03×1010 on the assumption that
all kinetically allowed reactions occur. This number seems to be close to the
number of biological species, extinct as well as extant, that can be created by the
biosphere.
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Appendix

Equilibrium or non-equilibrium thermodynamic states of the complex sys-
tem containing C independent constituents are described, in a given moment of
time, by thermodynamic functions, Gi for thermodynamic parameters and their
gradients, ∇ (in a simpler case by the differences in values for the pertinent
parameters in the system and in its surroundings). If the subscript “i" enumer-
ates all non-isomorphic states of the system, the system will be described by a
set of non-isomorphic functions:

Gi = Gi(p, T , c1, c2, . . . , cC; ∇p, ∇T , ∇c1, ∇c2, . . . , ∇cC)

i = 1, 2, . . . , η (A.1)

where η is the number of states.
For the systems composed from hundreds or thousands chemical compo-

nents, N , we can expect Gi to be a function of monstrous number of arguments.
It is not always the case. As shown in 1947 by Brinkley [23], if all kinetic reac-
tions occur in the system then, irrespective of the complexity of the system, the
number of independent components, C, can be replaced by the number of ele-
ments, M, from which the components of the system are formed.

C = M. (A.2)

However, even after this simplification η is not known generally. We have
recently shown [15] that the problem simplifies considerably if only equilibrium
thermodynamic states are taken into account. Under such conditions, the gradi-
ent arguments in thermodynamic functions become zero

Ge
i = Gi(p, T , c1, c2, . . . , cC; 0, 0, . . . , 0) i = 1, 2, . . . , ηe. (A.3)

Moreover, according to Gibbs phase rule, Ge
i can be given in the form:

Ge
i = Gi(R1, R2, R3, . . . , Rf ; 0, 0, . . . , 0)

i = 1, 2, . . . , ηe (A.4)

where f is the number of thermodynamic degrees of freedom for the system, and
Ri is the coordinate of the point on a certain two-dimensional surface, �, iso-
morphic with the surface of sphere in the space of thermodynamic parameters.

� = [X(p, T , c1, c2, . . . , cC), Y (p, T , c1, c2, . . . , cC)]. (A.5)
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If conditions resulting from the reference state for the system are imposed on the
location for Ri [14], every Ri point will represent one rather than two degrees of
freedom on the � surface. As shown in [14], the number of one-phase equilib-
rium states, ηe, is equal to the number of graphs that are the trees with C edges.
For C = 30, according to [13], ηe = 4.03 × 010.

η = ηe. (A.6)

Note that the equality is valid only if either some non-equilibrium states do not
undergo degeneration into one equilibrium, state attaining equilibrium. or, even
if they do, which is more likely, the contribution of the states undergoing degen-
eration can be ignored compared with the number of all states.
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